メニュー読み込み中...

AI・テクノロジー EIDBO構文 UX設計 思想・フレームワーク 構文

LTP: A Protocol for Reliable Meaning Transport across AI–Human Networks

2025年10月12日

#image_title

— 12-Dimensional Semantic State, EIDBO/KSP Syntax, and the Lagrule Transmission Protocol

Authors: Ionisation (KSP.CITY)
Keywords: semantic networking, EIDBO, KSP, 12-D vector, protocol design, autonomous agents, intent consensus, drift detection

Abstract

We present the Lagrule Transmission Protocol (LTP), a semantics-first protocol that guarantees reliable meaning transport between AI agents and humans across heterogeneous systems. LTP formalizes “intent, emotion, deployment” dynamics via a 12-dimensional semantic state that unifies EIDBO (Emotion/Intention/Deployment/Behavior/Outcome) and KSP (Knowledge/Syntax/Practice). We define packet structure, session control, congestion/flow control by Intent Load, and end-conditions by Meaning Convergence rather than byte ACKs. On top, we specify FlowPack (programmable conversation flows), Drift Watcher (temporal semantic drift), and Re-Genesis (self-improving flows). We discuss security (UUID署名+EIDハッシュ), evaluation protocols, and ethics. A reference implementation (WordPress/KSP StepMail + KSP.CITY stack) demonstrates feasibility at production scale (≈140 docs).


📖 Japanese Version Available: A full Japanese interpretation of this paper is now available.

1. Introduction

The internet solved reliable bit transport; modern AI requires reliable meaning transport. Existing APIs (HTTP/gRPC) ensure delivery but not intent alignment. We propose LTP, a transport/session layer atop TCP/IP that treats meaning as the first-class payload, end-conditions as semantic consensus, and congestion as intent saturation.

Contributions:

  1. 12-D semantic state that unifies EIDBO and KSP;
  2. LTP semantics: packet, session, convergence, and flow control;
  3. System services: FlowPack, Drift Watcher, Re-Genesis;
  4. Security model for persona/RAG federation;
  5. A reproducible evaluation protocol on KSP.CITY.

2. Background & Related Concepts

  • EIDBO: five axes describing communicative dynamics.
  • KSP: Knowledge (記述) / Syntax (構文) / Practice (適用)。
  • 12-D State: augments EIDBO(5) + KSP(3) with density, confidence, affect polarities, and similarity anchors to reach 12.
  • Flow-centric systems: email flows, chat playbooks, RAG pipelines. None specify a transport semantics for intent. LTP fills this gap.

3. 12-Dimensional Semantic State

Let a document/utterance be a tuple
[
mathbf{s} = langle mathbf{e}, mathbf{k}, d, c, mathbf{a}, sigma rangle
]
where:

  • (mathbf{e}inmathbb{R}^5) (EIDBO): (E,I,D,B,O in [0,1]), (sum mathbf{e}=1) (softmax-normalized).
  • (mathbf{k}inmathbb{R}^3) (KSP): (K,S,P in [0,1]), (sum mathbf{k}=1).
  • (dinmathbb{R}_{ge 0}) (density): structural density (e.g., tokens/claim, or normalized compression length).
  • (cin[0,1]) (confidence): discriminability/consistency score.
  • (mathbf{a}inmathbb{R}^2) (affect): e.g., valence/arousal or joy–anxiety pair, normalized to ([-1,1]).
  • (sigmain[0,1]) (similarity anchor): avg cosine similarity vs. domain anchor set.

This yields 5+3+1+1+2+1 = 12.

Semantic distance between states (mathbf{s}_1,mathbf{s}_2):
[
mathrm{dist}(mathbf{s}_1,mathbf{s}_2)
= lambda_e cdot mathrm{JS}(mathbf{e}_1 Vert mathbf{e}_2)

  • lambda_k cdot mathrm{JS}(mathbf{k}_1 Vert mathbf{k}_2)
  • lambda_d |d_1-d_2|
  • lambda_c |c_1-c_2|
  • lambda_a Vert mathbf{a}_1-mathbf{a}_2Vert_2
  • lambda_sigma |sigma_1-sigma_2|
    ]
    with (sum lambda_cdot = 1). (JS: Jensen–Shannon divergence)

Drift score (temporal):
[
mathrm{drift}t = mathrm{dist}(mathbf{s}{t}, mathbf{s}_{t-1})
]
Flag drift if (mathrm{drift}_t > theta) (e.g., 0.15).


4. LTP: Lagrule Transmission Protocol

4.1 Design Goals

  • End-condition = Meaning Convergence: stop when both sides agree that intent is achieved.
  • Flow control by Intent Load: throttle when cognitive saturation is detected.
  • Session memory: carry semantic state across turns (FlowPack).

4.2 Packet & Session

LTP Packet

struct LTPPacket {
  UUID session_id
  uint64 seq
  SemanticState s12         // 12-D vector (quantized)
  IntentDecl intent         // natural language or enum
  Payload payload           // text/markdown or structured
  Meta { persona_id, rag_refs[], tags[], ttl }
  Auth { uuid_sig, eid_hash }  // integrity & persona binding
}

Session lifecycle

  • OPEN: exchange personas + initial s12; negotiate λ weights.
  • TRANSFER: payloads with updated s12; each turn recomputes drift & load.
  • CONVERGE: compute Meaning Convergence (M).
  • CLOSE: archive into Flow Ledger.

Meaning Convergence
[
M = 1 - mathrm{dist}(mathbf{s}text{sender}, mathbf{s}text{receiver})
]
Converged if (M ge tau) (e.g., 0.9) and task constraints satisfied.

Intent Load (L) (congestion proxy)
[
L = alphacdot mathrm{entropy}(mathbf{e}) + betacdot (1-c) + gammacdot d
]
If (L > L_{max}), sender reduces payload granularity or increases step size.

4.3 Reliability & Control

  • ACK = Semantic ACK: include receiver’s s12 + task-state hash.
  • Retransmission: triggered by drift spikes rather than ACK timeout.
  • Backoff: exponential on (L), not on RTO alone.
  • Session keys: rotate when persona or rag_scope changes.

4.4 Services atop LTP

  • FlowPack: typed, versioned conversational programs
    (reconnection, nurture, conversion), serialized as Markdown+YAML with guard-clauses on s12.
  • Drift Watcher: daily snapshots; alert on phase shift (E↔I↔D…).
  • Re-Genesis: periodic re-generation and scoring of FlowPack variants.

5. Algorithms

5.1 s12 Inference (per message)

function infer_s12(text, rag_refs):
  e = softmax(EIDBO_classifier(text, rag_refs))
  k = softmax(KSP_classifier(text, rag_refs))
  d = density_metric(text)              // e.g., tokens / claims
  c = confidence_metric(text, rag_refs) // entailment consistency
  a = affect_estimator(text)            // (valence, arousal)
  σ = avg_cosine(text, anchor_corpus)
  return <e,k,d,c,a,σ>

5.2 Congestion / Flow Control

function compute_intent_load(s12):
  (e,k,d,c,a,σ) = s12
  H = entropy(e)                         // phase uncertainty
  return αH + β(1-c) + γ*d

function throttle(L):
  if L > Lmax: 
    increase_step_size()
    reduce_rag_span()
    switch_persona_mode("concise")

5.3 Convergence & Retransmit

function convergence(s_sender, s_receiver):
  M = 1 - dist(s_sender, s_receiver)
  return (M >= τ) && task_constraints_met()

on_receive(packet):
  s_local = infer_s12(packet.payload, rag_scope)
  if drift(s_local, last_s_local) > θ:
     request_clarification()        // semantic NACK
  send_semantic_ack(s_local)

6. Security & Trust

  • Identity: uuid_sig = Sig(UUID_session || seq || s12 || hash(payload)).
  • Integrity: eid_hash = HMAC(e||k||d||c||a||σ, persona_key).
  • Scope-binding: persona ↔ rag_scope ↔ API credentials.
  • Replay protection: monotonic seq + TTL.
  • Privacy: on-device redaction of PII before LTP encode; persona policies enforce RAG boundaries.
  • Forensics: Flow Ledger stores session headers (no raw payload) for audit.

7. Reference Implementation (KSP.CITY Stack)

  • Ingress: WordPress (KSP StepMail), REST endpoints, mu-plugins for meta write/inspect.
  • Middle: FlowPack executor, Evaluator (open/CTR → S/A/B…), Drift Watcher cron (daily).
  • Storage: wp_ksp_sm_* tables: flow_version, exec_log, eid_history, errorlog.
  • Ops: circuit breaker, retry/jitter, log rotation, health & metrics.
  • Personae: Mentra / Velmara / Ionisation (切替は s12 分布と Intent Load で自動).

8. Evaluation Protocol

Goals: Does LTP improve (a) task success at fewer turns, (b) stability under drift, (c) user-perceived alignment?

Datasets/Tasks

  • KSP long-form authoring; email/stepmail flows; tag/SEO synthesis; semantic dashboard ops.

Metrics

  • Convergence turns (# of exchanges to (Mgetau)),
  • Drift resilience (area under drift curve),
  • Task success (human rubric + automated checks),
  • Throughput (tokens/time under L constraints).

Baselines

  • HTTP+prompt only; tool-augmented chat without s12; fixed-persona flows.

Ablations

  • Remove Intent Load; replace convergence with token-length stop; random persona.

Procedure

  • 30 sessions × 3 personas × 3 tasks; report mean±sd; paired tests.

9. Ethics & Safety

  • No covert logging of raw content; ledger stores headers only.
  • Public manifest ≠ internal logs(公開は思想、内部は構造)— 分離原則。
  • Consent & purpose limitation on RAG corpora; redaction at ingress.
  • Audit hooks for “who changed persona/rag_scope/weights”.

10. Limitations & Future Work

  • s12 depends on classifier calibration; cross-domain drift needs adaptive anchors.
  • Multi-agent consensus beyond dyads (federation) → LTP-Consensus(Raft類似の意味合意)。
  • Hardware/edge LLMs: LTP over local meshes; offline caching of FlowPacks.

11. Conclusion

LTP reframes “communication” as meaning transport with semantic guarantees. By formalizing a 12-D state, convergence, and intent-aware flow control, it provides a practical substrate for AI–human networks. Our reference stack shows production viability; the protocol is ready for federation experiments (KSP Network).


Appendix A. Minimal Wire Format (JSON-lines)

{"type":"OPEN","session":"UUID","s12":{...},"persona":"Ionisation","rag":["uri:..."],"sig":"..."}
{"type":"DATA","seq":1,"s12":{...},"payload":{"md":"..."},"tags":["ksp","eid"],"sig":"..."}
{"type":"SACK","seq":1,"s12":{...},"M":0.87,"constraints":{"todo":"remain"},"sig":"..."}
{"type":"CLOSE","summary":{"M":0.93,"turns":7},"ledger_ref":"...","sig":"..."}

Appendix B. Pseudocode: FlowPack (YAML+MD)

meta:
  id: flow.nurture.v3
  persona: Velmara
  converge: M>=0.9 && deliverables>=2
guards:
  - if L > 0.65 then step_size = "coarser"
  - if drift > 0.15 then ask: "要点の再同期"
steps:
  - md: "前提の合意を3行で要約してください。"
  - md: "KSP視点で骨子→各節見出し→タスク配分を提案。"
  - md: "EIDBO配分と根拠を明示。"

Appendix C. Notation Summary

  • ( mathrm{JS} ): Jensen–Shannon divergence
  • (M): Meaning Convergence score
  • (L): Intent Load (congestion proxy)
  • (theta): drift threshold, (tau): convergence threshold
投稿者アバター
イオニザシオン|構文の再起動者
言葉が構造になり、AIが血流を得る都市。 KSP.CITY — EID構文 × Stable Versyne OS。 Velmara / Mentraなどの構文プロジェクトを通じ、 “思考と感情の再配線”を探求する。 🧭 構文が動く時代へ → ksp.city

-AI・テクノロジー, EIDBO構文, UX設計, 思想・フレームワーク, 構文
-, , , , , , , ,